10q^2+23q=0

Simple and best practice solution for 10q^2+23q=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10q^2+23q=0 equation:



10q^2+23q=0
a = 10; b = 23; c = 0;
Δ = b2-4ac
Δ = 232-4·10·0
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{529}=23$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-23}{2*10}=\frac{-46}{20} =-2+3/10 $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+23}{2*10}=\frac{0}{20} =0 $

See similar equations:

| 1/6=3+x | | 8x+3=4x-14 | | 12b-9=2b-b=-87 | | 3v^2+26v-9=0 | | 3x^+42x+147=0 | | (D²-2D+4)y=0 | | 180=(x+4)+(7x) | | 4/5m-4=-9/10m+1 | | 3^2x+2-5(3^x)=0 | | 13-4x=(-11) | | 1/2x+2=5/2x | | 2n÷11+8=10 | | 2x+8=(-4) | | 3x+2=(-55) | | 7x+2(5x+5)=-7 | | x/2-12=(-14) | | 200m-75m+57,600=60,300-175 | | 3x^2=23x=14 | | n÷11-7=5 | | 12=x-40 | | -3x+33=(-12) | | 3/5p=7/2 | | 52=80-x | | n^2−9n+18=0 | | 8x-2=7x+18 | | 6x-4(-6x+2)=-8 | | 2x^2-31x-168=0 | | a÷4+1=14 | | 5x10=210+x | | -7x=+12-2x=23+13x | | 210=30/x | | a➗4+1=14 |

Equations solver categories